Skip to content

Piero Bosio Social Web Site Personale Logo Fediverso

Social Forum federato con il resto del mondo. Non contano le istanze, contano le persone

Solved my cube in about 15 minutes.

Uncategorized
2 2 2

Gli ultimi otto messaggi ricevuti dalla Federazione
Post suggeriti
  • penso che presto lascerò mastodon.

    Uncategorized
    7
    0 Votes
    7 Posts
    7 Views
    @socialnetwork @nonnominkia @martellum Se vuoi più interazioni magari usa @diggita vedi che ci sono varie argomentazioni. In questo modo ti sarà più facile trovare persone che trattano il tuo stesso argomento.Ti basta fare un posto e poi mettere @cultura-@diggita- .com (senza i -) per parlare di politica satira etc... ma ce ne sono altri per città, per lo sport, etc...
  • 0 Votes
    4 Posts
    4 Views
    @Edelruth @mekkaokereke we got "real change" with Trump, of this kind.. "I want things to be different" https://webcomicname.com/post/152958755984
  • 0 Votes
    3 Posts
    5 Views
    @alsivx come mai?
  • 0 Votes
    1 Posts
    0 Views
    A Friday-afternoon puzzle about #RubiksCube:What's the shortest sequence of moves on the Cube which _non-obviously_ gets you back to where you started?By "non-obviously", I mean that it shouldn't be possible to _prove_ the sequence is a no-op by using only the obvious properties of the quarter-turn moves that they all have order 4, and opposite faces commute.To be group-theoretically formal about it, consider the following infinite group H, which captures those properties of the Cube moves but nothing more subtle:H = ⟨ L,R,F,B,U,D | LR=RL, FB=BF, UD=DU, L⁴=R⁴=U⁴=D⁴=F⁴=B⁴=e ⟩A sequence of moves is _obviously_ the identity if it's the identity even when you do it in H. What's the shortest sequence of moves that is the identity in the true Rubik's Cube group, but _not_ the identity in H?