Skip to content

Piero Bosio Social Web Site Personale Logo Fediverso

Social Forum federato con il resto del mondo. Non contano le istanze, contano le persone

My entry for Grafit Studio's weekly challenge (that I submitted too late 😭)


Gli ultimi otto messaggi ricevuti dalla Federazione
  • @photex interesting!

    read more

  • Wrote about designing type-safe sync/async mode support in TypeScript. Making object({ sync: syncParser, async: asyncParser }) automatically infer as async turned out to be trickier than expected.

    https://hackers.pub/@hongminhee/2026/typescript-sync-async-type-safety

    read more

  • @Paradox KDEConnect FTW

    read more

  • 0201

    Come fate a vivere nei palazzi dove c'è sempre qualcuno che a QUALSIASI ora deve fare un qualche tipo di rumore?
    È previsto nel contratto del buon condòmino? 🤔

    read more

  • I recently added sync/async mode support to Optique, a type-safe CLI parser
    for TypeScript. It turned out to be one of the trickier features I've
    implemented—the object() combinator alone needed to compute a combined mode
    from all its child parsers, and TypeScript's inference kept hitting edge cases.

    What is Optique?

    Optique is a type-safe, combinatorial CLI parser for TypeScript, inspired by
    Haskell's optparse-applicative. Instead of decorators or builder patterns,
    you compose small parsers into larger ones using combinators, and TypeScript
    infers the result types.

    Here's a quick taste:

    import { object } from "@optique/core/constructs"; import { argument, option } from "@optique/core/primitives"; import { string, integer } from "@optique/core/valueparser"; import { run } from "@optique/run"; const cli = object({ name: argument(string()), count: option("-n", "--count", integer()), }); // TypeScript infers: { name: string; count: number | undefined } const result = run(cli); // sync by default

    The type inference works through arbitrarily deep compositions—in most cases,
    you don't need explicit type annotations.

    How it started

    Lucas Garron (@lgarron@mastodon.social) opened an issue requesting
    async support for shell completions. He wanted to provide
    <kbd>Tab</kbd>-completion suggestions by running shell commands like
    git for-each-ref to list branches and tags.

    // Lucas's example: fetching Git branches and tags in parallel const [branches, tags] = await Promise.all([ $`git for-each-ref --format='%(refname:short)' refs/heads/`.text(), $`git for-each-ref --format='%(refname:short)' refs/tags/`.text(), ]);

    At first, I didn't like the idea. Optique's entire API was synchronous, which
    made it simpler to reason about and avoided the “async infection” problem where
    one async function forces everything upstream to become async. I argued that
    shell completion should be near-instantaneous, and if you need async data, you
    should cache it at startup.

    But Lucas pushed back. The filesystem is a database, and many useful
    completions inherently require async work—Git refs change constantly, and
    pre-caching everything at startup doesn't scale for large repos. Fair point.

    What I needed to solve

    So, how do you support both sync and async execution modes in a composable
    parser library while maintaining type safety?

    The key requirements were:

    parse() returns T or Promise<T> complete() returns T or Promise<T> suggest() returns Iterable<T> or AsyncIterable<T> When combining parsers, if any parser is async, the combined result
    must be async Existing sync code should continue to work unchanged

    The fourth requirement is the tricky one. Consider this:

    const syncParser = flag("--verbose"); const asyncParser = option("--branch", asyncValueParser); // What's the type of this? const combined = object({ verbose: syncParser, branch: asyncParser });

    The combined parser should be async because one of its fields is async.
    This means we need type-level logic to compute the combined mode.

    Five design options

    I explored five different approaches, each with its own trade-offs.

    Option A: conditional types with mode parameter

    Add a mode type parameter to Parser and use conditional types:

    type Mode = "sync" | "async"; type ModeValue<M extends Mode, T> = M extends "async" ? Promise<T> : T; interface Parser<M extends Mode, TValue, TState> { parse(context: ParserContext<TState>): ModeValue<M, ParserResult<TState>>; // ... }

    The challenge is computing combined modes:

    type CombineModes<T extends Record<string, Parser<any, any, any>>> = T[keyof T] extends Parser<infer M, any, any> ? M extends "async" ? "async" : "sync" : never; Option B: mode parameter with default value

    A variant of Option A, but place the mode parameter first with a default
    of "sync":

    interface Parser<M extends Mode = "sync", TValue, TState> { readonly $mode: M; // ... }

    The default value maintains backward compatibility—existing user code keeps
    working without changes.

    Option C: separate interfaces

    Define completely separate Parser and AsyncParser interfaces with
    explicit conversion:

    interface Parser<TValue, TState> { /* sync methods */ } interface AsyncParser<TValue, TState> { /* async methods */ } function toAsync<T, S>(parser: Parser<T, S>): AsyncParser<T, S>;

    Simpler to understand, but requires code duplication and explicit conversions.

    Option D: union return types for suggest() only

    The minimal approach. Only allow suggest() to be async:

    interface Parser<TValue, TState> { parse(context: ParserContext<TState>): ParserResult<TState>; // always sync suggest(context: ParserContext<TState>, prefix: string): Iterable<Suggestion> | AsyncIterable<Suggestion>; // can be either }

    This addresses the original use case but doesn't help if async parse() is
    ever needed.

    Option E: fp-ts style HKT simulation

    Use the technique from fp-ts to simulate Higher-Kinded Types:

    interface URItoKind<A> { Identity: A; Promise: Promise<A>; } type Kind<F extends keyof URItoKind<any>, A> = URItoKind<A>[F]; interface Parser<F extends keyof URItoKind<any>, TValue, TState> { parse(context: ParserContext<TState>): Kind<F, ParserResult<TState>>; }

    The most flexible approach, but with a steep learning curve.

    Testing the idea

    Rather than commit to an approach based on theoretical analysis, I created
    a prototype to test how well TypeScript handles the type inference in practice.
    I published my findings in the GitHub issue:

    Both approaches correctly handle the “any async → all async” rule at the
    type level. (…) Complex conditional types like
    ModeValue<CombineParserModes<T>, ParserResult<TState>> sometimes require
    explicit type casting in the implementation. This only affects library
    internals. The user-facing API remains clean.

    The prototype validated that Option B (explicit mode parameter with default)
    would work. I chose it for these reasons:

    Backward compatible: The default "sync" keeps existing code working Explicit: The mode is visible in both types and runtime (via a $mode
    property) Debuggable: Easy to inspect the current mode at runtime Better IDE support: Type information is more predictable How CombineModes works

    The CombineModes type computes whether a combined parser should be sync or
    async:

    type CombineModes<T extends readonly Mode[]> = "async" extends T[number] ? "async" : "sync";

    This type checks if "async" is present anywhere in the tuple of modes.
    If so, the result is "async"; otherwise, it's "sync".

    For combinators like object(), I needed to extract modes from parser
    objects and combine them:

    // Extract the mode from a single parser type ParserMode<T> = T extends Parser<infer M, unknown, unknown> ? M : never; // Combine modes from all values in a record of parsers type CombineObjectModes<T extends Record<string, Parser<Mode, unknown, unknown>>> = CombineModes<{ [K in keyof T]: ParserMode<T[K]> }[keyof T][]>; Runtime implementation

    The type system handles compile-time safety, but the implementation also needs
    runtime logic. Each parser has a $mode property that indicates its execution
    mode:

    const syncParser = option("-n", "--name", string()); console.log(syncParser.$mode); // "sync" const asyncParser = option("-b", "--branch", asyncValueParser); console.log(asyncParser.$mode); // "async"

    Combinators compute their mode at construction time:

    function object<T extends Record<string, Parser<Mode, unknown, unknown>>>( parsers: T ): Parser<CombineObjectModes<T>, ObjectValue<T>, ObjectState<T>> { const parserKeys = Reflect.ownKeys(parsers); const combinedMode: Mode = parserKeys.some( (k) => parsers[k as keyof T].$mode === "async" ) ? "async" : "sync"; // ... implementation } Refining the API

    Lucas suggested an important refinement during our
    discussion. Instead of having run() automatically choose between sync and
    async based on the parser mode, he proposed separate functions:

    Perhaps run(…) could be automatic, and runSync(…) and runAsync(…) could
    enforce that the inferred type matches what is expected.

    So we ended up with:

    run(): automatic based on parser mode runSync(): enforces sync mode at compile time runAsync(): enforces async mode at compile time // Automatic: returns T for sync parsers, Promise<T> for async const result1 = run(syncParser); // string const result2 = run(asyncParser); // Promise<string> // Explicit: compile-time enforcement const result3 = runSync(syncParser); // string const result4 = runAsync(asyncParser); // Promise<string> // Compile error: can't use runSync with async parser const result5 = runSync(asyncParser); // Type error!

    I applied the same pattern to parse()/parseSync()/parseAsync() and
    suggest()/suggestSync()/suggestAsync() in the facade functions.

    Creating async value parsers

    With the new API, creating an async value parser for Git branches looks
    like this:

    import type { Suggestion } from "@optique/core/parser"; import type { ValueParser, ValueParserResult } from "@optique/core/valueparser"; function gitRef(): ValueParser<"async", string> { return { $mode: "async", metavar: "REF", parse(input: string): Promise<ValueParserResult<string>> { return Promise.resolve({ success: true, value: input }); }, format(value: string): string { return value; }, async *suggest(prefix: string): AsyncIterable<Suggestion> { const { $ } = await import("bun"); const [branches, tags] = await Promise.all([ $`git for-each-ref --format='%(refname:short)' refs/heads/`.text(), $`git for-each-ref --format='%(refname:short)' refs/tags/`.text(), ]); for (const ref of [...branches.split("\n"), ...tags.split("\n")]) { const trimmed = ref.trim(); if (trimmed && trimmed.startsWith(prefix)) { yield { kind: "literal", text: trimmed }; } } }, }; }

    Notice that parse() returns Promise.resolve() even though it's synchronous.
    This is because the ValueParser<"async", T> type requires all methods to use
    async signatures. Lucas pointed out this is a minor ergonomic issue. If only
    suggest() needs to be async, you still have to wrap parse() in a Promise.

    I considered per-method mode granularity (e.g., ValueParser<ParseMode, SuggestMode, T>), but the implementation complexity would multiply
    substantially. For now, the workaround is simple enough:

    // Option 1: Use Promise.resolve() parse(input) { return Promise.resolve({ success: true, value: input }); } // Option 2: Mark as async and suppress the linter // biome-ignore lint/suspicious/useAwait: sync implementation in async ValueParser async parse(input) { return { success: true, value: input }; } What it cost

    Supporting dual modes added significant complexity to Optique's internals.
    Every combinator needed updates:

    Type signatures grew more complex with mode parameters Mode propagation logic had to be added to every combinator Dual implementations were needed for sync and async code paths Type casts were sometimes necessary in the implementation to satisfy
    TypeScript

    For example, the object() combinator went from around 100 lines to around
    250 lines. The internal implementation uses conditional logic based on the
    combined mode:

    if (combinedMode === "async") { return { $mode: "async" as M, // ... async implementation with Promise chains async parse(context) { // ... await each field's parse result }, }; } else { return { $mode: "sync" as M, // ... sync implementation parse(context) { // ... directly call each field's parse }, }; }

    This duplication is the cost of supporting both modes without runtime overhead
    for sync-only use cases.

    Lessons learned Listen to users, but validate with prototypes

    My initial instinct was to resist async support. Lucas's persistence and
    concrete examples changed my mind, but I validated the approach with a
    prototype before committing. The prototype revealed practical issues (like
    TypeScript inference limits) that pure design analysis would have missed.

    Backward compatibility is worth the complexity

    Making "sync" the default mode meant existing code continued to work
    unchanged. This was a deliberate choice. Breaking changes should require
    user action, not break silently.

    Unified mode vs per-method granularity

    I chose unified mode (all methods share the same sync/async mode) over
    per-method granularity. This means users occasionally write
    Promise.resolve() for methods that don't actually need async, but the
    alternative was multiplicative complexity in the type system.

    Designing in public

    The entire design process happened in a public GitHub issue. Lucas, Giuseppe,
    and others contributed ideas that shaped the final API. The
    runSync()/runAsync() distinction came directly from Lucas's feedback.

    Conclusion

    This was one of the more challenging features I've implemented in Optique.
    TypeScript's type system is powerful enough to encode the “any async means all
    async” rule at compile time, but getting there required careful design work and
    prototyping.

    What made it work: conditional types like ModeValue<M, T> can bridge the gap
    between sync and async worlds. You pay for it with implementation complexity,
    but the user-facing API stays clean and type-safe.

    Optique 0.9.0 with async support is currently in pre-release testing. If
    you'd like to try it, check out PR #70 or install the pre-release:

    npm add @optique/core@0.9.0-dev.212 @optique/run@0.9.0-dev.212 deno add --jsr @optique/core@0.9.0-dev.212 @optique/run@0.9.0-dev.212

    Feedback is welcome!

    read more

  • @eldritch48 what's even the excuse behind this decision?

    read more

  • read more

  • @futurebird here it's customary to have lentils

    read more
Post suggeriti