Skip to content

Piero Bosio Social Web Site Personale Logo Fediverso

Social Forum federato con il resto del mondo. Non contano le istanze, contano le persone

Stop writing CLI validation. Parse it right the first time.

  • I have this bad habit. When something annoys me enough times,
    I end up building a library for it. This time, it was CLI validation code.

    See, I spend a lot of time reading other people's code. Open source projects,
    work stuff, random GitHub repos I stumble upon at 2 AM. And I kept noticing this
    thing: every CLI tool has the same ugly validation code tucked away somewhere.
    You know the kind:

    if (!opts.server && opts.port) {
      throw new Error("--port requires --server flag");
    }
    
    if (opts.server && !opts.port) {
      opts.port = 3000; // default port
    }
    
    // wait, what if they pass --port without a value?
    // what if the port is out of range?
    // what if...
    

    It's not even that this code is hard to write. It's that it's everywhere.
    Every project. Every CLI tool. The same patterns, slightly different flavors.
    Options that depend on other options. Flags that can't be used together.
    Arguments that only make sense in certain modes.

    And here's what really got me: we solved this problem years ago for other types
    of data. Just… not for CLIs.

    The problem with validation

    There's this blog post that completely changed how I think about parsing.
    It's called Parse, don't validate by Alexis King. The gist? Don't parse data
    into a loose type and then check if it's valid. Parse it directly into a type
    that can only be valid.

    Think about it. When you get JSON from an API, you don't just parse it as any
    and then write a bunch of if-statements. You use something like Zod to parse
    it directly into the shape you want. Invalid data? The parser rejects it. Done.

    But with CLIs? We parse arguments into some bag of properties and then spend
    the next 100 lines checking if that bag makes sense. It's backwards.

    So yeah, I built Optique. Not because the world desperately needed another CLI
    parser (it didn't), but because I was tired of seeing—and writing—the same
    validation code everywhere.

    Three patterns I was sick of validating

    Dependent options

    This one's everywhere. You have an option that only makes sense when another
    option is enabled.

    The old way? Parse everything, then check:

    const opts = parseArgs(process.argv);
    if (!opts.server && opts.port) {
      throw new Error("--port requires --server");
    }
    if (opts.server && !opts.port) {
      opts.port = 3000;
    }
    // More validation probably lurking elsewhere...
    

    With Optique, you just describe what you want:

    const config = withDefault(
      object({
        server: flag("--server"),
        port: option("--port", integer()),
        workers: option("--workers", integer())
      }),
      { server: false }
    );
    

    Here's what TypeScript infers for config's type:

    type Config = 
      | { readonly server: false }
      | { readonly server: true; readonly port: number; readonly workers: number }
    

    The type system now understands that when server is false, port literally
    doesn't exist. Not undefined, not null—it's not there. Try to access it and
    TypeScript yells at you. No runtime validation needed.

    Mutually exclusive options

    Another classic. Pick one output format: JSON, YAML, or XML. But definitely not
    two.

    I used to write this mess:

    if ((opts.json ? 1 : 0) + (opts.yaml ? 1 : 0) + (opts.xml ? 1 : 0) > 1) {
      throw new Error('Choose only one output format');
    }
    

    (Don't judge me, you've written something similar.)

    Now?

    const format = or(
      map(option("--json"), () => "json" as const),
      map(option("--yaml"), () => "yaml" as const),
      map(option("--xml"), () => "xml" as const)
    );
    

    The or() combinator means exactly one succeeds. The result is just
    "json" | "yaml" | "xml". A single string. Not three booleans to juggle.

    Environment-specific requirements

    Production needs auth. Development needs debug flags. Docker needs different
    options than local. You know the drill.

    Instead of a validation maze, you just describe each environment:

    const envConfig = or(
      object({
        env: constant("prod"),
        auth: option("--auth", string()),      // Required in prod
        ssl: option("--ssl"),
        monitoring: option("--monitoring", url())
      }),
      object({
        env: constant("dev"),
        debug: optional(option("--debug")),    // Optional in dev
        verbose: option("--verbose")
      })
    );
    

    No auth in production? Parser fails immediately. Trying to access --auth in
    dev mode? TypeScript won't let you—the field doesn't exist on that type.

    “But parser combinators though…”

    I know, I know. “Parser combinators” sounds like something you'd need
    a CS degree to understand.

    Here's the thing: I don't have a CS degree. Actually, I don't have any degree.
    But I've been using parser combinators for years because they're actually… not
    that hard? It's just that the name makes them sound way scarier than they are.

    I'd been using them for other stuff—parsing config files, DSLs, whatever.
    But somehow it never clicked that you could use them for CLI parsing until
    I saw Haskell's optparse-applicative. That was a real “wait, of course”
    moment. Like, why are we doing this any other way?

    Turns out it's stupidly simple. A parser is just a function. Combinators are
    just functions that take parsers and return new parsers. That's it.

    // This is a parser
    const port = option("--port", integer());
    
    // This is also a parser (made from smaller parsers)
    const server = object({
      port: port,
      host: option("--host", string())
    });
    
    // Still a parser (parsers all the way down)
    const config = or(server, client);
    

    No monads. No category theory. Just functions. Boring, beautiful functions.

    TypeScript does the heavy lifting

    Here's the thing that still feels like cheating: I don't write types for my CLI
    configs anymore. TypeScript just… figures it out.

    const cli = or(
      command("deploy", object({
        action: constant("deploy"),
        environment: argument(string()),
        replicas: option("--replicas", integer())
      })),
      command("rollback", object({
        action: constant("rollback"),
        version: argument(string()),
        force: option("--force")
      }))
    );
    
    // TypeScript infers this type automatically:
    type Cli = 
      | { 
          readonly action: "deploy"
          readonly environment: string
          readonly replicas: number
        }
      | { 
          readonly action: "rollback"
          readonly version: string
          readonly force: boolean
        }
    

    TypeScript knows that if action is "deploy", then environment exists but
    version doesn't. It knows replicas is a number. It knows force is
    a boolean. I didn't tell it any of this.

    This isn't just about nice autocomplete (though yeah, the autocomplete is great).
    It's about catching bugs before they happen. Forget to handle a new option
    somewhere? Code won't compile.

    What actually changed for me

    I've been dogfooding this for a few weeks. Some real talk:

    I delete code now. Not refactor. Delete. That validation logic that used to
    be 30% of my CLI code? Gone. It feels weird every time.

    Refactoring isn't scary. Want to know something that usually terrifies me?
    Changing how a CLI takes its arguments. Like going from --input file.txt to
    just file.txt as a positional argument. With traditional parsers,
    you're hunting down validation logic everywhere. With this?
    You change the parser definition, TypeScript immediately shows you every place
    that breaks, you fix them, done. What used to be an hour of “did I catch
    everything?” is now “fix the red squiggles and move on.”

    My CLIs got fancier. When adding complex option relationships doesn't mean
    writing complex validation, you just… add them. Mutually exclusive groups?
    Sure. Context-dependent options? Why not. The parser handles it.

    The reusability is real too:

    const networkOptions = object({
      host: option("--host", string()),
      port: option("--port", integer())
    });
    
    // Reuse everywhere, compose differently
    const devServer = merge(networkOptions, debugOptions);
    const prodServer = merge(networkOptions, authOptions);
    const testServer = merge(networkOptions, mockOptions);
    

    But honestly? The biggest change is trust. If it compiles, the CLI logic works.
    Not “probably works” or “works unless someone passes weird arguments.”
    It just works.

    Should you care?

    If you're writing a 10-line script that takes one argument, you don't need this.
    process.argv[2] and call it a day.

    But if you've ever:

    • Had validation logic get out of sync with your actual options
    • Discovered in production that certain option combinations explode
    • Spent an afternoon tracking down why --verbose breaks when used with
      --json
    • Written the same “option A requires option B” check for the fifth time

    Then yeah, maybe you're tired of this stuff too.

    Fair warning: Optique is young. I'm still figuring things out, the API might
    shift a bit. But the core idea—parse, don't validate—that's solid.
    And I haven't written validation code in months.

    Still feels weird. Good weird.

    Try it or don't

    If this resonates:

    I'm not saying Optique is the answer to all CLI problems. I'm just saying
    I was tired of writing the same validation code everywhere, so I built something
    that makes it unnecessary.

    Take it or leave it. But that validation code you're about to write?
    You probably don't need it.

  • instance-fosstodon.org@relay.fedi.buzzundefined instance-fosstodon.org@relay.fedi.buzz shared this topic on
  • I have this bad habit. When something annoys me enough times,
    I end up building a library for it. This time, it was CLI validation code.

    See, I spend a lot of time reading other people's code. Open source projects,
    work stuff, random GitHub repos I stumble upon at 2 AM. And I kept noticing this
    thing: every CLI tool has the same ugly validation code tucked away somewhere.
    You know the kind:

    if (!opts.server && opts.port) {
      throw new Error("--port requires --server flag");
    }
    
    if (opts.server && !opts.port) {
      opts.port = 3000; // default port
    }
    
    // wait, what if they pass --port without a value?
    // what if the port is out of range?
    // what if...
    

    It's not even that this code is hard to write. It's that it's everywhere.
    Every project. Every CLI tool. The same patterns, slightly different flavors.
    Options that depend on other options. Flags that can't be used together.
    Arguments that only make sense in certain modes.

    And here's what really got me: we solved this problem years ago for other types
    of data. Just… not for CLIs.

    The problem with validation

    There's this blog post that completely changed how I think about parsing.
    It's called Parse, don't validate by Alexis King. The gist? Don't parse data
    into a loose type and then check if it's valid. Parse it directly into a type
    that can only be valid.

    Think about it. When you get JSON from an API, you don't just parse it as any
    and then write a bunch of if-statements. You use something like Zod to parse
    it directly into the shape you want. Invalid data? The parser rejects it. Done.

    But with CLIs? We parse arguments into some bag of properties and then spend
    the next 100 lines checking if that bag makes sense. It's backwards.

    So yeah, I built Optique. Not because the world desperately needed another CLI
    parser (it didn't), but because I was tired of seeing—and writing—the same
    validation code everywhere.

    Three patterns I was sick of validating

    Dependent options

    This one's everywhere. You have an option that only makes sense when another
    option is enabled.

    The old way? Parse everything, then check:

    const opts = parseArgs(process.argv);
    if (!opts.server && opts.port) {
      throw new Error("--port requires --server");
    }
    if (opts.server && !opts.port) {
      opts.port = 3000;
    }
    // More validation probably lurking elsewhere...
    

    With Optique, you just describe what you want:

    const config = withDefault(
      object({
        server: flag("--server"),
        port: option("--port", integer()),
        workers: option("--workers", integer())
      }),
      { server: false }
    );
    

    Here's what TypeScript infers for config's type:

    type Config = 
      | { readonly server: false }
      | { readonly server: true; readonly port: number; readonly workers: number }
    

    The type system now understands that when server is false, port literally
    doesn't exist. Not undefined, not null—it's not there. Try to access it and
    TypeScript yells at you. No runtime validation needed.

    Mutually exclusive options

    Another classic. Pick one output format: JSON, YAML, or XML. But definitely not
    two.

    I used to write this mess:

    if ((opts.json ? 1 : 0) + (opts.yaml ? 1 : 0) + (opts.xml ? 1 : 0) > 1) {
      throw new Error('Choose only one output format');
    }
    

    (Don't judge me, you've written something similar.)

    Now?

    const format = or(
      map(option("--json"), () => "json" as const),
      map(option("--yaml"), () => "yaml" as const),
      map(option("--xml"), () => "xml" as const)
    );
    

    The or() combinator means exactly one succeeds. The result is just
    "json" | "yaml" | "xml". A single string. Not three booleans to juggle.

    Environment-specific requirements

    Production needs auth. Development needs debug flags. Docker needs different
    options than local. You know the drill.

    Instead of a validation maze, you just describe each environment:

    const envConfig = or(
      object({
        env: constant("prod"),
        auth: option("--auth", string()),      // Required in prod
        ssl: option("--ssl"),
        monitoring: option("--monitoring", url())
      }),
      object({
        env: constant("dev"),
        debug: optional(option("--debug")),    // Optional in dev
        verbose: option("--verbose")
      })
    );
    

    No auth in production? Parser fails immediately. Trying to access --auth in
    dev mode? TypeScript won't let you—the field doesn't exist on that type.

    “But parser combinators though…”

    I know, I know. “Parser combinators” sounds like something you'd need
    a CS degree to understand.

    Here's the thing: I don't have a CS degree. Actually, I don't have any degree.
    But I've been using parser combinators for years because they're actually… not
    that hard? It's just that the name makes them sound way scarier than they are.

    I'd been using them for other stuff—parsing config files, DSLs, whatever.
    But somehow it never clicked that you could use them for CLI parsing until
    I saw Haskell's optparse-applicative. That was a real “wait, of course”
    moment. Like, why are we doing this any other way?

    Turns out it's stupidly simple. A parser is just a function. Combinators are
    just functions that take parsers and return new parsers. That's it.

    // This is a parser
    const port = option("--port", integer());
    
    // This is also a parser (made from smaller parsers)
    const server = object({
      port: port,
      host: option("--host", string())
    });
    
    // Still a parser (parsers all the way down)
    const config = or(server, client);
    

    No monads. No category theory. Just functions. Boring, beautiful functions.

    TypeScript does the heavy lifting

    Here's the thing that still feels like cheating: I don't write types for my CLI
    configs anymore. TypeScript just… figures it out.

    const cli = or(
      command("deploy", object({
        action: constant("deploy"),
        environment: argument(string()),
        replicas: option("--replicas", integer())
      })),
      command("rollback", object({
        action: constant("rollback"),
        version: argument(string()),
        force: option("--force")
      }))
    );
    
    // TypeScript infers this type automatically:
    type Cli = 
      | { 
          readonly action: "deploy"
          readonly environment: string
          readonly replicas: number
        }
      | { 
          readonly action: "rollback"
          readonly version: string
          readonly force: boolean
        }
    

    TypeScript knows that if action is "deploy", then environment exists but
    version doesn't. It knows replicas is a number. It knows force is
    a boolean. I didn't tell it any of this.

    This isn't just about nice autocomplete (though yeah, the autocomplete is great).
    It's about catching bugs before they happen. Forget to handle a new option
    somewhere? Code won't compile.

    What actually changed for me

    I've been dogfooding this for a few weeks. Some real talk:

    I delete code now. Not refactor. Delete. That validation logic that used to
    be 30% of my CLI code? Gone. It feels weird every time.

    Refactoring isn't scary. Want to know something that usually terrifies me?
    Changing how a CLI takes its arguments. Like going from --input file.txt to
    just file.txt as a positional argument. With traditional parsers,
    you're hunting down validation logic everywhere. With this?
    You change the parser definition, TypeScript immediately shows you every place
    that breaks, you fix them, done. What used to be an hour of “did I catch
    everything?” is now “fix the red squiggles and move on.”

    My CLIs got fancier. When adding complex option relationships doesn't mean
    writing complex validation, you just… add them. Mutually exclusive groups?
    Sure. Context-dependent options? Why not. The parser handles it.

    The reusability is real too:

    const networkOptions = object({
      host: option("--host", string()),
      port: option("--port", integer())
    });
    
    // Reuse everywhere, compose differently
    const devServer = merge(networkOptions, debugOptions);
    const prodServer = merge(networkOptions, authOptions);
    const testServer = merge(networkOptions, mockOptions);
    

    But honestly? The biggest change is trust. If it compiles, the CLI logic works.
    Not “probably works” or “works unless someone passes weird arguments.”
    It just works.

    Should you care?

    If you're writing a 10-line script that takes one argument, you don't need this.
    process.argv[2] and call it a day.

    But if you've ever:

    • Had validation logic get out of sync with your actual options
    • Discovered in production that certain option combinations explode
    • Spent an afternoon tracking down why --verbose breaks when used with
      --json
    • Written the same “option A requires option B” check for the fifth time

    Then yeah, maybe you're tired of this stuff too.

    Fair warning: Optique is young. I'm still figuring things out, the API might
    shift a bit. But the core idea—parse, don't validate—that's solid.
    And I haven't written validation code in months.

    Still feels weird. Good weird.

    Try it or don't

    If this resonates:

    I'm not saying Optique is the answer to all CLI problems. I'm just saying
    I was tired of writing the same validation code everywhere, so I built something
    that makes it unnecessary.

    Take it or leave it. But that validation code you're about to write?
    You probably don't need it.

    @hongminhee this is cool! I've never used NodeJS CLI apps, but I run into similar issues to the ones you described when using Python


Gli ultimi otto messaggi ricevuti dalla Federazione
Post suggeriti
  • 0 Votes
    1 Posts
    4 Views
    If you've built CLI tools, you've written code like this: if (opts.reporter === "junit" && !opts.outputFile) { throw new Error("--output-file is required for junit reporter"); } if (opts.reporter === "html" && !opts.outputFile) { throw new Error("--output-file is required for html reporter"); } if (opts.reporter === "console" && opts.outputFile) { console.warn("--output-file is ignored for console reporter"); } A few months ago, I wrote Stop writing CLI validation. Parse it right the first time. about parsing individual option values correctly. But it didn't cover the relationships between options. In the code above, --output-file only makes sense when --reporter is junit or html. When it's console, the option shouldn't exist at all. We're using TypeScript. We have a powerful type system. And yet, here we are, writing runtime checks that the compiler can't help with. Every time we add a new reporter type, we need to remember to update these checks. Every time we refactor, we hope we didn't miss one. The state of TypeScript CLI parsers The old guard—Commander, yargs, minimist—were built before TypeScript became mainstream. They give you bags of strings and leave type safety as an exercise for the reader. But we've made progress. Modern TypeScript-first libraries like cmd-ts and Clipanion (the library powering Yarn Berry) take types seriously: // cmd-ts const app = command({ args: { reporter: option({ type: string, long: 'reporter' }), outputFile: option({ type: string, long: 'output-file' }), }, handler: (args) => { // args.reporter: string // args.outputFile: string }, }); // Clipanion class TestCommand extends Command { reporter = Option.String('--reporter'); outputFile = Option.String('--output-file'); } These libraries infer types for individual options. --port is a number. --verbose is a boolean. That's real progress. But here's what they can't do: express that --output-file is required when --reporter is junit, and forbidden when --reporter is console. The relationship between options isn't captured in the type system. So you end up writing validation code anyway: handler: (args) => { // Both cmd-ts and Clipanion need this if (args.reporter === "junit" && !args.outputFile) { throw new Error("--output-file required for junit"); } // args.outputFile is still string | undefined // TypeScript doesn't know it's definitely string when reporter is "junit" } Rust's clap and Python's Click have requires and conflicts_with attributes, but those are runtime checks too. They don't change the result type. If the parser configuration knows about option relationships, why doesn't that knowledge show up in the result type? Modeling relationships with conditional() Optique treats option relationships as a first-class concept. Here's the test reporter scenario: import { conditional, object } from "@optique/core/constructs"; import { option } from "@optique/core/primitives"; import { choice, string } from "@optique/core/valueparser"; import { run } from "@optique/run"; const parser = conditional( option("--reporter", choice(["console", "junit", "html"])), { console: object({}), junit: object({ outputFile: option("--output-file", string()), }), html: object({ outputFile: option("--output-file", string()), openBrowser: option("--open-browser"), }), } ); const [reporter, config] = run(parser); The conditional() combinator takes a discriminator option (--reporter) and a map of branches. Each branch defines what other options are valid for that discriminator value. TypeScript infers the result type automatically: type Result = | ["console", {}] | ["junit", { outputFile: string }] | ["html", { outputFile: string; openBrowser: boolean }]; When reporter is "junit", outputFile is string—not string | undefined. The relationship is encoded in the type. Now your business logic gets real type safety: const [reporter, config] = run(parser); switch (reporter) { case "console": runWithConsoleOutput(); break; case "junit": // TypeScript knows config.outputFile is string writeJUnitReport(config.outputFile); break; case "html": // TypeScript knows config.outputFile and config.openBrowser exist writeHtmlReport(config.outputFile); if (config.openBrowser) openInBrowser(config.outputFile); break; } No validation code. No runtime checks. If you add a new reporter type and forget to handle it in the switch, the compiler tells you. A more complex example: database connections Test reporters are a nice example, but let's try something with more variation. Database connection strings: myapp --db=sqlite --file=./data.db myapp --db=postgres --host=localhost --port=5432 --user=admin myapp --db=mysql --host=localhost --port=3306 --user=root --ssl Each database type needs completely different options: SQLite just needs a file path PostgreSQL needs host, port, user, and optionally password MySQL needs host, port, user, and has an SSL flag Here's how you model this: import { conditional, object } from "@optique/core/constructs"; import { withDefault, optional } from "@optique/core/modifiers"; import { option } from "@optique/core/primitives"; import { choice, string, integer } from "@optique/core/valueparser"; const dbParser = conditional( option("--db", choice(["sqlite", "postgres", "mysql"])), { sqlite: object({ file: option("--file", string()), }), postgres: object({ host: option("--host", string()), port: withDefault(option("--port", integer()), 5432), user: option("--user", string()), password: optional(option("--password", string())), }), mysql: object({ host: option("--host", string()), port: withDefault(option("--port", integer()), 3306), user: option("--user", string()), ssl: option("--ssl"), }), } ); The inferred type: type DbConfig = | ["sqlite", { file: string }] | ["postgres", { host: string; port: number; user: string; password?: string }] | ["mysql", { host: string; port: number; user: string; ssl: boolean }]; Notice the details: PostgreSQL defaults to port 5432, MySQL to 3306. PostgreSQL has an optional password, MySQL has an SSL flag. Each database type has exactly the options it needs—no more, no less. With this structure, writing dbConfig.ssl when the mode is sqlite isn't a runtime error—it's a compile-time impossibility. Try expressing this with requires_if attributes. You can't. The relationships are too rich. The pattern is everywhere Once you see it, you find this pattern in many CLI tools: Authentication modes: const authParser = conditional( option("--auth", choice(["none", "basic", "token", "oauth"])), { none: object({}), basic: object({ username: option("--username", string()), password: option("--password", string()), }), token: object({ token: option("--token", string()), }), oauth: object({ clientId: option("--client-id", string()), clientSecret: option("--client-secret", string()), tokenUrl: option("--token-url", url()), }), } ); Deployment targets, output formats, connection protocols—anywhere you have a mode selector that determines what other options are valid. Why conditional() exists Optique already has an or() combinator for mutually exclusive alternatives. Why do we need conditional()? The or() combinator distinguishes branches based on structure—which options are present. It works well for subcommands like git commit vs git push, where the arguments differ completely. But in the reporter example, the structure is identical: every branch has a --reporter flag. The difference lies in the flag's value, not its presence. // This won't work as intended const parser = or( object({ reporter: option("--reporter", choice(["console"])) }), object({ reporter: option("--reporter", choice(["junit", "html"])), outputFile: option("--output-file", string()) }), ); When you pass --reporter junit, or() tries to pick a branch based on what options are present. Both branches have --reporter, so it can't distinguish them structurally. conditional() solves this by reading the discriminator's value first, then selecting the appropriate branch. It bridges the gap between structural parsing and value-based decisions. The structure is the constraint Instead of parsing options into a loose type and then validating relationships, define a parser whose structure is the constraint. Traditional approach Optique approach Parse → Validate → Use Parse (with constraints) → Use Types and validation logic maintained separately Types reflect the constraints Mismatches found at runtime Mismatches found at compile time The parser definition becomes the single source of truth. Add a new reporter type? The parser definition changes, the inferred type changes, and the compiler shows you everywhere that needs updating. Try it If this resonates with a CLI you're building: Documentation Tutorial conditional() reference GitHub Next time you're about to write an if statement checking option relationships, ask: could the parser express this constraint instead? The structure of your parser is the constraint. You might not need that validation code at all.
  • 0 Votes
    1 Posts
    5 Views
    CLIパーサーの新しい記事を書きました。--reporterの値によって--output-fileが必須になったり禁止になったり…そういう関係、型で表現できたら楽じゃないですか? https://zenn.dev/hongminhee/articles/201ca6d2e57764 #TypeScript #CLI #Optique
  • 0 Votes
    1 Posts
    7 Views
    We're thrilled to announce Optique 0.7.0, a release focused on developer experience improvements and expanding Optique's ecosystem with validation library integrations. Optique is a type-safe, combinatorial CLI argument parser for TypeScript. Unlike traditional CLI libraries that rely on configuration objects, Optique lets you compose parsers from small, reusable functions—bringing the same functional composition patterns that make Zod powerful to CLI development. If you're new to Optique, check out Why Optique? to learn how this approach unlocks possibilities that configuration-based libraries simply can't match. This release introduces automatic “Did you mean?” suggestions for typos, seamless integration with Zod and Valibot validation libraries, duplicate option name detection for catching configuration bugs early, and context-aware error messages that help users understand exactly what went wrong. “Did you mean?”: Automatic typo suggestions We've all been there: you type --verbos instead of --verbose, and the CLI responds with an unhelpful “unknown option” error. Optique 0.7.0 changes this by automatically suggesting similar options when users make typos: const parser = object({ verbose: option("-v", "--verbose"), version: option("--version"), }); // User types: --verbos (typo) const result = parse(parser, ["--verbos"]); // Error: Unexpected option or argument: --verbos. // // Did you mean one of these? // --verbose // --version The suggestion system uses Levenshtein distance to find similar names, suggesting up to 3 alternatives when the edit distance is within a reasonable threshold. Suggestions work automatically for both option names and subcommand names across all parser types—option(), flag(), command(), object(), or(), and longestMatch(). See the automatic suggestions documentation for more details. Customizing suggestions You can customize how suggestions are formatted or disable them entirely through the errors option: // Custom suggestion format for option/flag parsers const portOption = option("--port", integer(), { errors: { noMatch: (invalidOption, suggestions) => suggestions.length > 0 ? message`Unknown option ${invalidOption}. Try: ${values(suggestions)}` : message`Unknown option ${invalidOption}.` } }); // Custom suggestion format for combinators const config = object({ host: option("--host", string()), port: option("--port", integer()) }, { errors: { suggestions: (suggestions) => suggestions.length > 0 ? message`Available options: ${values(suggestions)}` : [] } }); Zod and Valibot integrations Two new packages join the Optique family, bringing powerful validation capabilities from the TypeScript ecosystem to your CLI parsers. @optique/zod The new @optique/zod package lets you use Zod schemas directly as value parsers: import { option, object } from "@optique/core"; import { zod } from "@optique/zod"; import { z } from "zod"; const parser = object({ email: option("--email", zod(z.string().email())), port: option("--port", zod(z.coerce.number().int().min(1).max(65535))), format: option("--format", zod(z.enum(["json", "yaml", "xml"]))), }); The package supports both Zod v3.25.0+ and v4.0.0+, with automatic error formatting that integrates seamlessly with Optique's message system. See the Zod integration guide for complete usage examples. @optique/valibot For those who prefer a lighter bundle, @optique/valibot integrates with Valibot—a validation library with a significantly smaller footprint (~10KB vs Zod's ~52KB): import { option, object } from "@optique/core"; import { valibot } from "@optique/valibot"; import * as v from "valibot"; const parser = object({ email: option("--email", valibot(v.pipe(v.string(), v.email()))), port: option("--port", valibot(v.pipe( v.string(), v.transform(Number), v.integer(), v.minValue(1), v.maxValue(65535) ))), }); Both packages support custom error messages through their respective error handler options (zodError and valibotError), giving you full control over how validation failures are presented to users. See the Valibot integration guide for complete usage examples. Duplicate option name detection A common source of bugs in CLI applications is accidentally using the same option name in multiple places. Previously, this would silently cause ambiguous parsing where the first matching parser consumed the option. Optique 0.7.0 now validates option names at parse time and fails with a clear error message when duplicates are detected: const parser = object({ input: option("-i", "--input", string()), interactive: option("-i", "--interactive"), // Oops! -i is already used }); // Error: Duplicate option name -i found in fields: input, interactive. // Each option name must be unique within a parser combinator. This validation applies to object(), tuple(), merge(), and group() combinators. The or() combinator continues to allow duplicate option names since its branches are mutually exclusive. See the duplicate detection documentation for more details. If you have a legitimate use case for duplicate option names, you can opt out with allowDuplicates: true: const parser = object({ input: option("-i", "--input", string()), interactive: option("-i", "--interactive"), }, { allowDuplicates: true }); Context-aware error messages Error messages from combinators are now smarter about what they report. Instead of generic "No matching option or command found" messages, Optique now analyzes what the parser expects and provides specific feedback: // When only arguments are expected const parser1 = or(argument(string()), argument(integer())); // Error: Missing required argument. // When only commands are expected const parser2 = or(command("add", addParser), command("remove", removeParser)); // Error: No matching command found. // When both options and arguments are expected const parser3 = object({ port: option("--port", integer()), file: argument(string()), }); // Error: No matching option or argument found. Dynamic error messages with NoMatchContext For applications that need internationalization or context-specific messaging, the errors.noMatch option now accepts a function that receives a NoMatchContext object: const parser = or( command("add", addParser), command("remove", removeParser), { errors: { noMatch: ({ hasOptions, hasCommands, hasArguments }) => { if (hasCommands && !hasOptions && !hasArguments) { return message`일치하는 명령을 찾을 수 없습니다.`; // Korean } return message`잘못된 입력입니다.`; } } } ); Shell completion naming conventions The run() function now supports configuring whether shell completions use singular or plural naming conventions: run(parser, { completion: { name: "plural", // Uses "completions" and "--completions" } }); // Or for singular only run(parser, { completion: { name: "singular", // Uses "completion" and "--completion" } }); The default "both" accepts either form, maintaining backward compatibility while letting you enforce a consistent style in your CLI. Additional improvements Line break handling: formatMessage() now distinguishes between soft breaks (single \n, converted to spaces) and hard breaks (double \n\n, creating paragraph separations), improving multi-line error message formatting. New utility functions: Added extractOptionNames() and extractArgumentMetavars() to the @optique/core/usage module for programmatic access to parser metadata. Installation deno add --jsr @optique/core @optique/run npm add @optique/core @optique/run pnpm add @optique/core @optique/run yarn add @optique/core @optique/run bun add @optique/core @optique/run For validation library integrations: # Zod integration deno add jsr:@optique/zod # Deno npm add @optique/zod # npm/pnpm/yarn/bun # Valibot integration deno add jsr:@optique/valibot # Deno npm add @optique/valibot # npm/pnpm/yarn/bun Looking forward This release represents our commitment to making CLI development in TypeScript as smooth as possible. The “Did you mean?” suggestions and validation library integrations were among the most requested features, and we're excited to see how they improve your CLI applications. For detailed documentation and examples, visit the Optique documentation. We welcome your feedback and contributions on GitHub!
  • 0 Votes
    1 Posts
    11 Views
    We're pleased to announce the release of Optique 0.5.0, which brings significant improvements to error handling, help text generation, and overall developer experience. This release maintains full backward compatibility, so you can upgrade without modifying existing code. Better code organization through module separation The large @optique/core/parser module has been refactored into three focused modules that better reflect their purposes. Primitive parsers like option() and argument() now live in @optique/core/primitives, modifier functions such as optional() and withDefault() have moved to @optique/core/modifiers, and combinator functions including object() and or() are now in @optique/core/constructs. // Before: everything from one module import { option, flag, argument, // primitives optional, withDefault, multiple, // modifiers object, or, merge // constructs } from "@optique/core/parser"; // After: organized imports (recommended) import { option, flag, argument } from "@optique/core/primitives"; import { optional, withDefault, multiple } from "@optique/core/modifiers"; import { object, or, merge } from "@optique/core/constructs"; While we recommend importing from these specialized modules for better clarity, all functions continue to be re-exported from the original @optique/core/parser module to ensure your existing code works unchanged. This reorganization makes the codebase more maintainable and helps developers understand the relationships between different parser types. Smarter error handling with automatic conversion One of the most requested features has been better error handling for default value callbacks in withDefault(). Previously, if your callback threw an error—say, when an environment variable wasn't set—that error would bubble up as a runtime exception. Starting with 0.5.0, these errors are automatically caught and converted to parser-level errors, providing consistent error formatting and proper exit codes. // Before (0.4.x): runtime exception that crashes the app const parser = object({ apiUrl: withDefault(option("--url", url()), () => { if (!process.env.API_URL) { throw new Error("API_URL not set"); // Uncaught exception! } return new URL(process.env.API_URL); }) }); // After (0.5.0): graceful parser error const parser = object({ apiUrl: withDefault(option("--url", url()), () => { if (!process.env.API_URL) { throw new Error("API_URL not set"); // Automatically caught and formatted } return new URL(process.env.API_URL); }) }); We've also introduced the WithDefaultError class, which accepts structured messages instead of plain strings. This means you can now throw errors with rich formatting that matches the rest of Optique's error output: import { WithDefaultError, message, envVar } from "@optique/core"; const parser = object({ // Plain error - automatically converted to text databaseUrl: withDefault(option("--db", url()), () => { if (!process.env.DATABASE_URL) { throw new Error("Database URL not configured"); } return new URL(process.env.DATABASE_URL); }), // Rich error with structured message apiToken: withDefault(option("--token", string()), () => { if (!process.env.API_TOKEN) { throw new WithDefaultError( message`Environment variable ${envVar("API_TOKEN")} is required for authentication` ); } return process.env.API_TOKEN; }) }); The new envVar message component ensures environment variables are visually distinct in error messages, appearing bold and underlined in colored output or wrapped in backticks in plain text. More helpful help text with custom default descriptions Default values in help text can sometimes be misleading, especially when they come from environment variables or are computed at runtime. Optique 0.5.0 allows you to customize how default values appear in help output through an optional third parameter to withDefault(). import { withDefault, message, envVar } from "@optique/core"; const parser = object({ // Before: shows actual URL value in help apiUrl: withDefault( option("--api-url", url()), new URL("https://api.example.com") ), // Help shows: --api-url URL [https://api.example.com] // After: shows descriptive text apiUrl: withDefault( option("--api-url", url()), new URL("https://api.example.com"), { message: message`Default API endpoint` } ), // Help shows: --api-url URL [Default API endpoint] }); This is particularly useful for environment variables and computed defaults: const parser = object({ // Environment variable authToken: withDefault( option("--token", string()), () => process.env.AUTH_TOKEN || "anonymous", { message: message`${envVar("AUTH_TOKEN")} or anonymous` } ), // Help shows: --token STRING [AUTH_TOKEN or anonymous] // Computed value workers: withDefault( option("--workers", integer()), () => os.cpus().length, { message: message`Number of CPU cores` } ), // Help shows: --workers INT [Number of CPU cores] // Sensitive information apiKey: withDefault( option("--api-key", string()), () => process.env.SECRET_KEY || "", { message: message`From secure storage` } ), // Help shows: --api-key STRING [From secure storage] }); Instead of displaying the actual default value, you can now show descriptive text that better explains where the value comes from. This is particularly useful for sensitive information like API tokens or for computed defaults like the number of CPU cores. The help system now properly handles ANSI color codes in default value displays, maintaining dim styling even when inner components have their own color formatting. This ensures default values remain visually distinct from the main help text. Comprehensive error message customization We've added a systematic way to customize error messages across all parser types and combinators. Every parser now accepts an errors option that lets you provide context-specific feedback instead of generic error messages. This applies to primitive parsers, value parsers, combinators, and even specialized parsers in companion packages. Primitive parser errors import { option, flag, argument, command } from "@optique/core/primitives"; import { message, optionName, metavar } from "@optique/core/message"; // Option parser with custom errors const serverPort = option("--port", integer(), { errors: { missing: message`Server port is required. Use ${optionName("--port")} to specify.`, invalidValue: (error) => message`Invalid port number: ${error}`, endOfInput: message`${optionName("--port")} requires a ${metavar("PORT")} number.` } }); // Command parser with custom errors const deployCommand = command("deploy", deployParser, { errors: { notMatched: (expected, actual) => message`Unknown command "${actual}". Did you mean "${expected}"?` } }); Value parser errors Error customization can be static messages for consistent errors or dynamic functions that incorporate the problematic input: import { integer, choice, string } from "@optique/core/valueparser"; // Integer with range validation const port = integer({ min: 1024, max: 65535, errors: { invalidInteger: message`Port must be a valid number.`, belowMinimum: (value, min) => message`Port ${String(value)} is reserved. Use ${String(min)} or higher.`, aboveMaximum: (value, max) => message`Port ${String(value)} exceeds maximum. Use ${String(max)} or lower.` } }); // Choice with helpful suggestions const logLevel = choice(["debug", "info", "warn", "error"], { errors: { invalidChoice: (input, choices) => message`"${input}" is not a valid log level. Choose from: ${values(choices)}.` } }); // String with pattern validation const email = string({ pattern: /^[^@]+@[^@]+\.[^@]+$/, errors: { patternMismatch: (input) => message`"${input}" is not a valid email address. Use format: user@example.com` } }); Combinator errors import { or, multiple, object } from "@optique/core/constructs"; // Or combinator with custom no-match error const format = or( flag("--json"), flag("--yaml"), flag("--xml"), { errors: { noMatch: message`Please specify an output format: --json, --yaml, or --xml.`, unexpectedInput: (token) => message`Unknown format option "${token}".` } } ); // Multiple parser with count validation const inputFiles = multiple(argument(string()), { min: 1, max: 5, errors: { tooFew: (count, min) => message`At least ${String(min)} file required, but got ${String(count)}.`, tooMany: (count, max) => message`Maximum ${String(max)} files allowed, but got ${String(count)}.` } }); Package-specific errors Both @optique/run and @optique/temporal packages have been updated with error customization support for their specialized parsers: // @optique/run path parser import { path } from "@optique/run/valueparser"; const configFile = option("--config", path({ mustExist: true, type: "file", extensions: [".json", ".yaml"], errors: { pathNotFound: (input) => message`Configuration file "${input}" not found. Please check the path.`, notAFile: (input) => message`"${input}" is a directory. Please specify a file.`, invalidExtension: (input, extensions, actual) => message`Invalid config format "${actual}". Use ${values(extensions)}.` } })); // @optique/temporal instant parser import { instant, duration } from "@optique/temporal"; const timestamp = option("--time", instant({ errors: { invalidFormat: (input) => message`"${input}" is not a valid timestamp. Use ISO 8601 format: 2024-01-01T12:00:00Z` } })); const timeout = option("--timeout", duration({ errors: { invalidFormat: (input) => message`"${input}" is not a valid duration. Use ISO 8601 format: PT30S (30 seconds), PT5M (5 minutes)` } })); Error customization integrates seamlessly with Optique's structured message format, ensuring consistent styling across all error output. The system helps you provide helpful, actionable feedback that guides users toward correct usage rather than leaving them confused by generic error messages. Looking forward This release focuses on improving the developer experience without breaking existing code. Every new feature is opt-in, and all changes maintain backward compatibility. We believe these improvements make Optique more pleasant to work with, especially when building user-friendly CLI applications that need clear error messages and helpful documentation. We're grateful to the community members who suggested these improvements and helped shape this release through discussions and issue reports. Your feedback continues to drive Optique's evolution toward being a more capable and ergonomic CLI parser for TypeScript. To upgrade to Optique 0.5.0, simply update your dependencies: npm update @optique/core @optique/run # or deno update For detailed migration guidance and API documentation, please refer to the official documentation. While no code changes are required, we encourage you to explore the new error customization options and help text improvements to enhance your CLI applications.