Skip to content

Piero Bosio Social Web Site Personale Logo Fediverso

Social Forum federato con il resto del mondo. Non contano le istanze, contano le persone

Is there, like, a javascript library for manipulating midi files?

Uncategorized
4 2 0

Gli ultimi otto messaggi ricevuti dalla Federazione
Post suggeriti
  • 0 Votes
    1 Posts
    4 Views
    We've all been there. You start a quick TypeScript CLI with process.argv.slice(2), add a couple of options, and before you know it you're drowning in if/else blocks and parseInt calls. It works, until it doesn't. In this guide, we'll move from manual argument parsing to a fully type-safe CLI with subcommands, mutually exclusive options, and shell completion. The naïve approach: parsing process.argv Let's start with the most basic approach. Say we want a greeting program that takes a name and optionally repeats the greeting: // greet.ts const args = process.argv.slice(2); let name: string | undefined; let count = 1; for (let i = 0; i < args.length; i++) { if (args[i] === "--name" || args[i] === "-n") { name = args[++i]; } else if (args[i] === "--count" || args[i] === "-c") { count = parseInt(args[++i], 10); } } if (!name) { console.error("Error: --name is required"); process.exit(1); } for (let i = 0; i < count; i++) { console.log(`Hello, ${name}!`); } Run node greet.js --name Alice --count 3 and you'll get three greetings. But this approach is fragile. count could be NaN if someone passes --count foo, and we'd silently proceed. There's no help text. If someone passes --name without a value, we'd read the next option as the name. And the boilerplate grows fast with each new option. The traditional libraries You've probably heard of Commander.js and Yargs. They've been around for years and solve the basic problems: // With Commander.js import { program } from "commander"; program .requiredOption("-n, --name <n>", "Name to greet") .option("-c, --count <number>", "Number of times to greet", "1") .parse(); const opts = program.opts(); These libraries handle help text, option parsing, and basic validation. But they were designed before TypeScript became mainstream, and the type safety is bolted on rather than built in. The real problem shows up when you need mutually exclusive options. Say your CLI works either in "server mode" (with --port and --host) or "client mode" (with --url). With these libraries, you end up with a config object where all options are potentially present, and you're left writing runtime checks to ensure the user didn't mix incompatible flags. TypeScript can't help you because the types don't reflect the actual constraints. Enter Optique Optique takes a different approach. Instead of configuring options declaratively, you build parsers by composing smaller parsers together. The types flow naturally from this composition, so TypeScript always knows exactly what shape your parsed result will have. Optique works across JavaScript runtimes: Node.js, Deno, and Bun are all supported. The core parsing logic has no runtime-specific dependencies, so you can even use it in browsers if you need to parse CLI-like arguments in a web context. Let's rebuild our greeting program: import { object } from "@optique/core/constructs"; import { option } from "@optique/core/primitives"; import { integer, string } from "@optique/core/valueparser"; import { withDefault } from "@optique/core/modifiers"; import { run } from "@optique/run"; const parser = object({ name: option("-n", "--name", string()), count: withDefault(option("-c", "--count", integer({ min: 1 })), 1), }); const config = run(parser); // config is typed as { name: string; count: number } for (let i = 0; i < config.count; i++) { console.log(`Hello, ${config.name}!`); } Types are inferred automatically. config.name is string, not string | undefined. config.count is number, guaranteed to be at least 1. Validation is built in: integer({ min: 1 }) rejects non-integers and values below 1 with clear error messages. Help text is generated automatically, and the run() function handles errors and exits with appropriate codes. Install it with your package manager of choice: npm add @optique/core @optique/run # or: pnpm add, yarn add, bun add, deno add jsr:@optique/core jsr:@optique/run Building up: a file converter Let's build something more realistic: a file converter that reads from an input file, converts to a specified format, and writes to an output file. import { object } from "@optique/core/constructs"; import { optional, withDefault } from "@optique/core/modifiers"; import { argument, option } from "@optique/core/primitives"; import { choice, string } from "@optique/core/valueparser"; import { run } from "@optique/run"; const parser = object({ input: argument(string({ metavar: "INPUT" })), output: option("-o", "--output", string({ metavar: "FILE" })), format: withDefault( option("-f", "--format", choice(["json", "yaml", "toml"])), "json" ), pretty: option("-p", "--pretty"), verbose: option("-v", "--verbose"), }); const config = run(parser, { help: "both", version: { mode: "both", value: "1.0.0" }, }); // config.input: string // config.output: string // config.format: "json" | "yaml" | "toml" // config.pretty: boolean // config.verbose: boolean The type of config.format isn't just string. It's the union "json" | "yaml" | "toml". TypeScript will catch typos like config.format === "josn" at compile time. The choice() parser is useful for any option with a fixed set of valid values: log levels, output formats, environment names, and so on. You get both runtime validation (invalid values are rejected with helpful error messages) and compile-time checking (TypeScript knows the exact set of possible values). Mutually exclusive options Now let's tackle the case that trips up most CLI libraries: mutually exclusive options. Say our tool can either run as a server or connect as a client, but not both: import { object, or } from "@optique/core/constructs"; import { withDefault } from "@optique/core/modifiers"; import { argument, constant, option } from "@optique/core/primitives"; import { integer, string, url } from "@optique/core/valueparser"; import { run } from "@optique/run"; const parser = or( // Server mode object({ mode: constant("server"), port: option("-p", "--port", integer({ min: 1, max: 65535 })), host: withDefault(option("-h", "--host", string()), "0.0.0.0"), }), // Client mode object({ mode: constant("client"), url: argument(url()), }), ); const config = run(parser); The or() combinator tries each alternative in order. The first one that successfully parses wins. The constant() parser adds a literal value to the result without consuming any input, which serves as a discriminator. TypeScript infers a discriminated union: type Config = | { mode: "server"; port: number; host: string } | { mode: "client"; url: URL }; Now you can write type-safe code that handles each mode: if (config.mode === "server") { console.log(`Starting server on ${config.host}:${config.port}`); } else { console.log(`Connecting to ${config.url.hostname}`); } Try accessing config.url in the server branch. TypeScript won't let you. The compiler knows that when mode is "server", only port and host exist. This is the key difference from configuration-based libraries. With Commander or Yargs, you'd get a type like { port?: number; host?: string; url?: string } and have to check at runtime which combination of fields is actually present. With Optique, the types match the actual constraints of your CLI. Subcommands For larger tools, you'll want subcommands. Optique handles this with the command() parser: import { object, or } from "@optique/core/constructs"; import { optional } from "@optique/core/modifiers"; import { argument, command, constant, option } from "@optique/core/primitives"; import { string } from "@optique/core/valueparser"; import { run } from "@optique/run"; const parser = or( command("add", object({ action: constant("add"), key: argument(string({ metavar: "KEY" })), value: argument(string({ metavar: "VALUE" })), })), command("remove", object({ action: constant("remove"), key: argument(string({ metavar: "KEY" })), })), command("list", object({ action: constant("list"), pattern: optional(option("-p", "--pattern", string())), })), ); const result = run(parser, { help: "both" }); switch (result.action) { case "add": console.log(`Adding ${result.key}=${result.value}`); break; case "remove": console.log(`Removing ${result.key}`); break; case "list": console.log(`Listing${result.pattern ? ` (filter: ${result.pattern})` : ""}`); break; } Each subcommand gets its own help text. Run myapp add --help and you'll see only the options relevant to add. Run myapp --help and you'll see a summary of all available commands. The pattern here is the same as mutually exclusive options: or() to combine alternatives, constant() to add a discriminator. This consistency is one of Optique's strengths. Once you understand the basic combinators, you can build arbitrarily complex CLI structures by composing them. Shell completion Optique has built-in shell completion for Bash, zsh, fish, PowerShell, and Nushell. Enable it by passing completion: "both" to run(): const config = run(parser, { help: "both", version: { mode: "both", value: "1.0.0" }, completion: "both", }); Users can then generate completion scripts: $ myapp --completion bash >> ~/.bashrc $ myapp --completion zsh >> ~/.zshrc $ myapp --completion fish > ~/.config/fish/completions/myapp.fish The completions are context-aware. They know about your subcommands, option values, and choice() alternatives. Type myapp --format <TAB> and you'll see json, yaml, toml as suggestions. Type myapp a<TAB> and it'll complete to myapp add. Completion support is often an afterthought in CLI tools, but it makes a real difference in user experience. With Optique, you get it essentially for free. Integrating with validation libraries Already using Zod for validation in your project? The @optique/zod package lets you reuse those schemas as CLI value parsers: import { z } from "zod"; import { zod } from "@optique/zod"; import { option } from "@optique/core/primitives"; const email = option("--email", zod(z.string().email())); const port = option("--port", zod(z.coerce.number().int().min(1).max(65535))); Your existing validation logic just works. The Zod error messages are passed through to the user, so you get the same helpful feedback you're used to. Prefer Valibot? The @optique/valibot package works the same way: import * as v from "valibot"; import { valibot } from "@optique/valibot"; import { option } from "@optique/core/primitives"; const email = option("--email", valibot(v.pipe(v.string(), v.email()))); Valibot's bundle size is significantly smaller than Zod's (~10KB vs ~52KB), which can matter for CLI tools where startup time is noticeable. Tips A few things I've learned building CLIs with Optique: Start simple. Begin with object() and basic options. Add or() for mutually exclusive groups only when you need them. It's easy to over-engineer CLI parsers. Use descriptive metavars. Instead of string(), write string({ metavar: "FILE" }) or string({ metavar: "URL" }). The metavar appears in help text and error messages, so it's worth the extra few characters. Leverage withDefault(). It's better than making options optional and checking for undefined everywhere. Your code becomes cleaner when you can assume values are always present. Test your parser. Optique's core parsing functions work without process.argv, so you can unit test your parser logic: import { parse } from "@optique/core/parser"; const result = parse(parser, ["--name", "Alice", "--count", "3"]); if (result.success) { assert.equal(result.value.name, "Alice"); assert.equal(result.value.count, 3); } This is especially valuable for complex parsers with many edge cases. Going further We've covered the fundamentals, but Optique has more to offer: Async value parsers for validating against external sources, like checking if a Git branch exists or if a URL is reachable Path validation with path() for checking file existence, directory structure, and file extensions Custom value parsers for domain-specific types (though Zod/Valibot integration is usually easier) Reusable option groups with merge() for sharing common options across subcommands The @optique/temporal package for parsing dates and times using the Temporal API Check out the documentation for the full picture. The tutorial walks through the concepts in more depth, and the cookbook has patterns for common scenarios. That's it Building CLIs in TypeScript doesn't have to mean fighting with types or writing endless runtime validation. Optique lets you express constraints in a way that TypeScript actually understands, so the compiler catches mistakes before they reach production. The source is on GitHub, and packages are available on both npm and JSR. Questions or feedback? Find me on the fediverse or open an issue on the GitHub repo.
  • 0 Votes
    1 Posts
    5 Views
    If you've built CLI tools, you've written code like this: if (opts.reporter === "junit" && !opts.outputFile) { throw new Error("--output-file is required for junit reporter"); } if (opts.reporter === "html" && !opts.outputFile) { throw new Error("--output-file is required for html reporter"); } if (opts.reporter === "console" && opts.outputFile) { console.warn("--output-file is ignored for console reporter"); } A few months ago, I wrote Stop writing CLI validation. Parse it right the first time. about parsing individual option values correctly. But it didn't cover the relationships between options. In the code above, --output-file only makes sense when --reporter is junit or html. When it's console, the option shouldn't exist at all. We're using TypeScript. We have a powerful type system. And yet, here we are, writing runtime checks that the compiler can't help with. Every time we add a new reporter type, we need to remember to update these checks. Every time we refactor, we hope we didn't miss one. The state of TypeScript CLI parsers The old guard—Commander, yargs, minimist—were built before TypeScript became mainstream. They give you bags of strings and leave type safety as an exercise for the reader. But we've made progress. Modern TypeScript-first libraries like cmd-ts and Clipanion (the library powering Yarn Berry) take types seriously: // cmd-ts const app = command({ args: { reporter: option({ type: string, long: 'reporter' }), outputFile: option({ type: string, long: 'output-file' }), }, handler: (args) => { // args.reporter: string // args.outputFile: string }, }); // Clipanion class TestCommand extends Command { reporter = Option.String('--reporter'); outputFile = Option.String('--output-file'); } These libraries infer types for individual options. --port is a number. --verbose is a boolean. That's real progress. But here's what they can't do: express that --output-file is required when --reporter is junit, and forbidden when --reporter is console. The relationship between options isn't captured in the type system. So you end up writing validation code anyway: handler: (args) => { // Both cmd-ts and Clipanion need this if (args.reporter === "junit" && !args.outputFile) { throw new Error("--output-file required for junit"); } // args.outputFile is still string | undefined // TypeScript doesn't know it's definitely string when reporter is "junit" } Rust's clap and Python's Click have requires and conflicts_with attributes, but those are runtime checks too. They don't change the result type. If the parser configuration knows about option relationships, why doesn't that knowledge show up in the result type? Modeling relationships with conditional() Optique treats option relationships as a first-class concept. Here's the test reporter scenario: import { conditional, object } from "@optique/core/constructs"; import { option } from "@optique/core/primitives"; import { choice, string } from "@optique/core/valueparser"; import { run } from "@optique/run"; const parser = conditional( option("--reporter", choice(["console", "junit", "html"])), { console: object({}), junit: object({ outputFile: option("--output-file", string()), }), html: object({ outputFile: option("--output-file", string()), openBrowser: option("--open-browser"), }), } ); const [reporter, config] = run(parser); The conditional() combinator takes a discriminator option (--reporter) and a map of branches. Each branch defines what other options are valid for that discriminator value. TypeScript infers the result type automatically: type Result = | ["console", {}] | ["junit", { outputFile: string }] | ["html", { outputFile: string; openBrowser: boolean }]; When reporter is "junit", outputFile is string—not string | undefined. The relationship is encoded in the type. Now your business logic gets real type safety: const [reporter, config] = run(parser); switch (reporter) { case "console": runWithConsoleOutput(); break; case "junit": // TypeScript knows config.outputFile is string writeJUnitReport(config.outputFile); break; case "html": // TypeScript knows config.outputFile and config.openBrowser exist writeHtmlReport(config.outputFile); if (config.openBrowser) openInBrowser(config.outputFile); break; } No validation code. No runtime checks. If you add a new reporter type and forget to handle it in the switch, the compiler tells you. A more complex example: database connections Test reporters are a nice example, but let's try something with more variation. Database connection strings: myapp --db=sqlite --file=./data.db myapp --db=postgres --host=localhost --port=5432 --user=admin myapp --db=mysql --host=localhost --port=3306 --user=root --ssl Each database type needs completely different options: SQLite just needs a file path PostgreSQL needs host, port, user, and optionally password MySQL needs host, port, user, and has an SSL flag Here's how you model this: import { conditional, object } from "@optique/core/constructs"; import { withDefault, optional } from "@optique/core/modifiers"; import { option } from "@optique/core/primitives"; import { choice, string, integer } from "@optique/core/valueparser"; const dbParser = conditional( option("--db", choice(["sqlite", "postgres", "mysql"])), { sqlite: object({ file: option("--file", string()), }), postgres: object({ host: option("--host", string()), port: withDefault(option("--port", integer()), 5432), user: option("--user", string()), password: optional(option("--password", string())), }), mysql: object({ host: option("--host", string()), port: withDefault(option("--port", integer()), 3306), user: option("--user", string()), ssl: option("--ssl"), }), } ); The inferred type: type DbConfig = | ["sqlite", { file: string }] | ["postgres", { host: string; port: number; user: string; password?: string }] | ["mysql", { host: string; port: number; user: string; ssl: boolean }]; Notice the details: PostgreSQL defaults to port 5432, MySQL to 3306. PostgreSQL has an optional password, MySQL has an SSL flag. Each database type has exactly the options it needs—no more, no less. With this structure, writing dbConfig.ssl when the mode is sqlite isn't a runtime error—it's a compile-time impossibility. Try expressing this with requires_if attributes. You can't. The relationships are too rich. The pattern is everywhere Once you see it, you find this pattern in many CLI tools: Authentication modes: const authParser = conditional( option("--auth", choice(["none", "basic", "token", "oauth"])), { none: object({}), basic: object({ username: option("--username", string()), password: option("--password", string()), }), token: object({ token: option("--token", string()), }), oauth: object({ clientId: option("--client-id", string()), clientSecret: option("--client-secret", string()), tokenUrl: option("--token-url", url()), }), } ); Deployment targets, output formats, connection protocols—anywhere you have a mode selector that determines what other options are valid. Why conditional() exists Optique already has an or() combinator for mutually exclusive alternatives. Why do we need conditional()? The or() combinator distinguishes branches based on structure—which options are present. It works well for subcommands like git commit vs git push, where the arguments differ completely. But in the reporter example, the structure is identical: every branch has a --reporter flag. The difference lies in the flag's value, not its presence. // This won't work as intended const parser = or( object({ reporter: option("--reporter", choice(["console"])) }), object({ reporter: option("--reporter", choice(["junit", "html"])), outputFile: option("--output-file", string()) }), ); When you pass --reporter junit, or() tries to pick a branch based on what options are present. Both branches have --reporter, so it can't distinguish them structurally. conditional() solves this by reading the discriminator's value first, then selecting the appropriate branch. It bridges the gap between structural parsing and value-based decisions. The structure is the constraint Instead of parsing options into a loose type and then validating relationships, define a parser whose structure is the constraint. Traditional approach Optique approach Parse → Validate → Use Parse (with constraints) → Use Types and validation logic maintained separately Types reflect the constraints Mismatches found at runtime Mismatches found at compile time The parser definition becomes the single source of truth. Add a new reporter type? The parser definition changes, the inferred type changes, and the compiler shows you everywhere that needs updating. Try it If this resonates with a CLI you're building: Documentation Tutorial conditional() reference GitHub Next time you're about to write an if statement checking option relationships, ask: could the parser express this constraint instead? The structure of your parser is the constraint. You might not need that validation code at all.
  • 0 Votes
    1 Posts
    11 Views
    Anyone aware of #Javascript jobs at a not evil/impactful company? I’ve got 15 years of experience, fluent in React and NodeJS with Express. Experience with Postgres, SQLite and NoSQL databases. Got my last company Cyber Essentials Certified. Im proficient in dev ops and sys admin. Have a small (but growing!) portfolio of FOSS work.Have an extensive background in teaching programming too, so can mentor juniors. I LOVE mentoring. Have an academic background too. #GetFediHired boosts welcome 💖
  • 0 Votes
    1 Posts
    15 Views
    I just published v0.98 of #jSH, a #JavaScript scripting environment for #MSDOS. This is the 'little' text-mode brother to #DOjS. - updated curl, mbedTLS and ziphttps://github.com/SuperIlu/jSH#RetroComputing#FreeDOS#DJGPP#RetroDev#RetroDevelopment